Transient development of SRS and SBS in ps-time scale by using sub-ps Thomson diagnostic

2006 
The control of parametric instabilities in large plasmas remains a challenge for the ICF program. Clearly, kinetic effects play an important role in the saturation mechanisms. Sub-picosecond Thomson analysis associated with short pulse interaction permits to explore these topics. A set of experiments have been performed in preformed, He plasmas using the 100-TW laser facility at LULI. The spectra of the electrostatic waves driven by stimulated Raman and Brillouin backscatterings generated in the 1.5 ps, ω laser interaction have been measured with 0.3 ps time-resolution by using a short Thomson probe. Additionally, space-resolved and k-resolved spectra have been obtained. The experiments show that the fastest instability -B-SRS- first develops in the rising part of the pump. The B-SBS-driven IAW grows more slowly. B-SRS then abruptly vanishes around the maximum of the pump, while the IAW can be detected tens of picoseconds after the pump, allowing direct measurement of the IAW damping. The EPW k-spectra show that the EPW dispersion relation significantly deviates from the standard one. They exhibit a k-feature which could be related to the presence of a hot electron population produced in the B-SRS saturation process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []