Influence of anisotropic bending stiffness of gas diffusion layers on the electrochemical performances of polymer electrolyte membrane fuel cells

2010 
Abstract The effects of gas diffusion layer’s (GDL’s) anisotropic bending stiffness on the electrochemical performances of polymer electrolyte membrane fuel cells have been investigated for carbon fiber-felt and -paper GDLs. The bending stiffness values of all GDLs in the machine direction are higher than those in the cross-machine direction. We have prepared GDL sheet samples such that the machine direction of GDL roll is aligned with the major flow field direction of a metallic bipolar plate at angles of 0° (parallel: ‘0° GDL’) and 90° (perpendicular: ‘90° GDL’). The I–V performances of all the 5-cell stacks with 90° GDLs are higher than those with 0° GDLs. All the 5-cell stacks with 90° GDLs show lower values of high-frequency resistance (HFR) than those with 0° GDLs. However, the gas pressure differences at both anode and cathode of 5-cell stacks with 90° GDLs appear to be similar to or slightly lower than those with 0° GDLs, making the lower HFR as a dominant factor for the improved I–V performances. This may result from the reduced intrusion of 90° GDLs into gas channels than 0° GDLs as observed by less thickness reduction under compression of 90° GDLs. A 45° GDL (skew alignment) also shows better performances than the 0° GDL.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    22
    Citations
    NaN
    KQI
    []