Mutational, transcriptional and viral shedding dynamics of the marine turtle fibropapillomatosis tumor epizootic

2020 
Sea turtle populations are directly and indirectly under threat from a range of anthropogenic processes. Perhaps the most visibly apparent of these is the disfiguring tumor disease epizootic (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at a number of affected sites globally. Environmental exposures seem key to inducing tumor development, possibly through weakening host immune systems to the point of enabling pathogen-induced tumor formation. However, we do not yet understand the precise molecular and mutational events driving fibropapillomatosis tumor formation and progression. Similarly, many open questions remain about the role of the herpesvirus (chelonid herpesvirus 5, ChHV5) associated with the disease as a potential co-trigger, and whether its occurrence within tumors is causative or opportunistic. Without improved understanding of the basic biology of this disease epizootic, treatment, containment and mitigation options are severely hampered. To address fundamental questions relating to the oncogenic signaling, mutational spectrum, viral load, viral transcriptional status (lytic or latent) and spread, we employed transcriptomic profiling, whole genome sequencing, immunohistochemistry and environmental (e)DNA-based monitoring of viral shedding. In particular we focused on the mutational landscape of tumors and assessing the transcriptional similarity of external (skin) and internal (visceral organs) tumors, and the oncogenic signaling events driving early stage tumor growth and post-surgical tumor regrowth. These analyses revealed that internal fibropapillomatosis tumors are molecularly distinct from the more common external tumors. However, our molecular analyses also revealed that there are a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common between internal and external tumors, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. We also determined that the tumor genomes can harbor copy number gains, indicating potentially viral-independent oncogenic processes. Genes within such mutated genomic regions have known roles in human skin cancer, including MAPK-associated genes. Turtles attempt to mount an immune response, but in some animals this appears to be insufficient to prevent tumor development and growth. ChHV5 was transcriptionally latent in all tumor stages sequenced, including early stage and recurrent tumors. We also revealed that the tumors themselves are the primary source of viral shedding into the marine environment and, if they are surgically removed, the level of ChHV5 in the water column drops. Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, therapeutic treatment, and appropriate quarantine responses for this wildlife epizootic. Furthermore, they provide insights into human pathogen-induced cancers, particularly mechanisms which are difficult to study in the human and terrestrial context, such as time-course quantification-based monitoring of viral shedding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    11
    Citations
    NaN
    KQI
    []