Asymmetric Cooperation Control of Dual-Arm Exoskeletons Using Human Collaborative Manipulation Models.

2021 
The exoskeleton is mainly used by subjects who suffer muscle injury to enhance motor ability in the daily life environment. Previous research seldom considers extending human collaboration skills to human-robot collaborations. In this article, two models, that is: 1) the following the better model and 2) the interpersonal goal integration model, are designed to facilitate the human-human collaborative manipulation in tracking a moving target. Integrated with dual-arm exoskeletons, these two models can enable the robot to successfully perform target tracking with two human partners. Specifically, the manipulation workspace of the human-exoskeleton system is divided into a human region and a robot region. In the human region, the human acts as the leader during cooperation, while, in the robot region, the robot takes the leading role. A novel region-based Barrier Lyapunov function (BLF) is then designed to handle the change of leader roles between the human and the robot and ensures the operation within the constrained human and robot regions when driving the dual-arm exoskeleton to track the moving target. The designed adaptive controller ensures the convergence of tracking errors in the presence of region switches. Experiments are performed on the dual-arm robotic exoskeleton for the subject with muscle damage or some degree of motor dysfunctions to evaluate the proposed controller in tracking a moving target, and the experimental results demonstrate the effectiveness of the developed control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []