A Cuboid Spider Silk: Structure–Function Relationship and Polypeptide Signature

2020 
A unique cuboid spider silk from the outer egg sac of Nephila pilipes, with an unusual square cross-section, is disclosed. The structure-function relationships within this silk are first studied through structural characterization, mechanical measurement, protein conformation, and polypeptide signature of silk proteins. This silk maintains the higher stiffness property of egg sac silks, and also shows a species difference. Environmental response of the mechanical properties within this silk are observed. Synchrotron FTIR microspectroscopy is used to monitor the silk protein conformation in a single natural silk. The beta-sheet structure aligns parallel to the fiber axis with a content of 22% +/- 2.6%. The de novo resulting polypeptide from the solid silk fibers are novel, and an abundant polar amino acid insertion is observed. Short polyalanine (A(n), n <= 3), alternating serine and alanine (S/A)X, and alternating glycine and alanine (G/A)X, GGX, and SSX dominates in the resulting de novo polypeptide. This accords with the composition pattern of other egg sac silk proteins, besides the rarely observed GGX. This study broadens the library of egg sac spider silks and provides a new perspective to uncover structure-function relationships in spider silk.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    4
    Citations
    NaN
    KQI
    []