Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) Protein Domains Target LipY Lipases of Pathogenic Mycobacteria to the Cell Surface via the ESX-5 Pathway
2011
The type VII secretion system ESX-5 is a major pathway for export of PE and PPE proteins in pathogenic mycobacteria. These mycobacteria-specific protein families are characterized by conserved N-terminal domains of 100 and 180 amino acids, which contain the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) motifs after which they are named. Here we investigated secretion of the triacylglycerol lipase LipY, which in fast-growing mycobacteria contains a signal sequence, but in slow-growing species appears to have replaced the signal peptide with a PE or PPE domain. Selected LipY homologues were expressed in wild-type Mycobacterium marinum and its corresponding ESX-5 mutant, and localization of the proteins was investigated by immunoblotting and electron microscopy. Our study shows that Mycobacterium tuberculosis PE-LipY (LipYtub) and M. marinum PPE-LipY (LipYmar) are both secreted to the bacterial surface in an ESX-5-dependent fashion. After transport, the PE/PPE domains are removed by proteolytic cleavage. In contrast, Mycobacterium gilvum LipY, which has a signal sequence, is not transported to the cell surface. Furthermore, we show that LipYtub and LipYmar require their respective PE and PPE domains for ESX-5-dependent secretion. The role of the PE domain in ESX-5 secretion was confirmed in a whole cell lipase assay, in which wild-type bacteria expressing full-length LipYtub, but not LipYtub lacking its PE domain, were shown to hydrolyze extracellular lipids. In conclusion, both PE and PPE domains contain a signal required for secretion of LipY by the ESX-5 system, and these domains are proteolytically removed upon translocation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
54
References
111
Citations
NaN
KQI