Reliability-based design optimization for RV reducer with experimental constraint

2021 
Due to the limited joint position space and the consideration of reducing the moment of inertia and vibration for industrial robot, the design optimization for rotate vector (RV) reducer is becoming a new and urgent problem in industry. Currently, the existing researches focus on deterministic design optimization, which may cause unreliable designs without considering uncertainties. Therefore, the study focuses on the implementation of reliability-based design optimization (RBDO) to the RV reducer. The aim is to make the RV reducer smaller in size while ensuring a higher reliability. Firstly, a modified advanced mean value (MAMV) method is proposed to improve efficiency and robustness of the advanced mean value method, which encounters inefficiency and numerical instability for the concave or highly nonlinear performance measure functions. Secondly, a mathematical model of RBDO for the RV reducer is established. Thirdly, the proposed MAMV method is integrated into double-loop method to optimize the established mathematical model of RBDO with different target reliability. The results show that the proposed MAMV method is efficient compared with other methods. In addition, the volume of the RV reducer is correspondingly reduced by 9.44%, 7.89%, and 5.66% compared with that before optimization when the target reliabilities are 99.38%, 99.87%, and 99.98%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    5
    Citations
    NaN
    KQI
    []