Equivalent parameters-based residual thermal stress fields modeling and design for square coated indexable cutting inserts

2019 
Residual stresses may cause coating indexable inserts to delaminate during machining. To meet the demands of long tool life, low costs, high efficiency, and accuracy in industry, it is critical to know the magnitude and distribution of residual stress fields. An equivalent parameters-based modeling method is proposed to predict residual thermal stress fields for square coated indexable cutting inserts. The parameter equivalent formulas are deduced and the finite element implementation is described. The effectiveness of the approach is verified using inserts with a single coating (e.g., titanium carbide (TiC) and titanium nitride (TiN)) and multilayer coatings (e.g., TiC/TiN) by comparison with theoretical values and experimental results. In addition, some important techniques in coated inserts design and manufacturing for coated inserts were obtained by studying influence parameters via the method. A key feature of the method is that it can provide details on all stress components to facilitate a better understanding of the stress induced during cooling of square coated indexable cutting inserts. Moreover, it would provide an important theoretical basis for the design, manufacture, and selection of coated indexable inserts, and the prediction results can be considered as the initial stress fields to evaluate the performance of inserts in high-speed machining more accurately.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []