Stromelysin-2 is upregulated during normal wound repair and is induced by cytokines

2000 
Stromelysin-2 is a matrix metalloproteinase that degrades in vitro several protein components relevant to wound repair such as collagens III and IV, gelatin, nidogen, laminin-1, proteoglycans, and elastin. Furthermore, it can activate other matrix metalloproteinases, such as collagenase-1 (matrix metalloproteinase-1) and collagenase-2 (matrix metalloproteinase-8), as well as 92 kDa gelatinase. The aim of this study was to determine in a large variety of wounds (normally healing dermal and mucosal wounds, suction blisters, ex vivo cultures, diabetic, decubitus, rheumatic, and venous ulcers) and keratinocyte cultures, which factors contribute to stromelysin-2 expression and how it is induced in relation to other matrix metalloproteinases. Our results show that stromelysin-2 mRNA and protein are upregulated later (at 3 d) than matrix metalloproteinase-1 in normally healing wounds and ex vivo explants, in which stromelysin-2 is invariably expressed by keratinocytes migrating over dermal matrix. The number of keratinocytes expressing stromelysin-2 was greatest in chronic inflamed diabetic and venous ulcers compared with rheumatoid and decubitus ulcers, six of which had no signal. In keratinocyte cultures, tumor necrosis factor-α, epidermal growth factor, and transforming growth factor-β1 induced stromelysin-2 expression as measured by quantitative reverse transcriptase–polymerase chain reaction, whereas different matrices did not upregulate the mRNA. Immunostaining demonstrated stromal transforming growth factor-β1 in contact with the stromelysin-2-positive keratinocytes. Our results suggest that stromelysin-2 expression is important for the normal repair process and is upregulated by cytokines rather than cell–matrix interactions. Stromelysin-2 is most likely to participate in the remodeling of the newly formed basement membrane, and is not overexpressed in retarded wound healing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []