Suppression of plasminogen activator inhibitor-1 by inhaled nitric oxide attenuates the adverse effects of hyperoxia in a rat model of acute lung injury

2015 
Abstract Introduction Locally increased expression of plasminogen activator inhibitor-1 (PAI-1) in acute lung injury (ALI) is largely responsible for fibrin deposition in the alveolae and lung microvasculature. In vitro, nitric oxide (NO) effectively suppresses the ischemic induction of PAI-1. We aimed to investigate the effects of inhaled NO on PAI-1 expression in ALI in a rat model with and without hyperoxia. Materials and Methods Healthy adult rats were primed with lipopolysaccharide (LPS) via an intraperitoneal challenge followed by a second dose of LPS given intratracheally to induce ALI (LPS group), whereas the control groups were given sterile saline. All groups were allocated to subgroups according to gas exposure: NO (20 parts per million, NO), 95% oxygen (O), both (ONO), or room air (A). At 4 h, 24 h, 48 h (after 4 h or 24 h exposure to the various gases, 24 h gas intervention and then observation until 48 h), the rat lungs were processed and PAI-1 protein and mRNA expression, histopathological lung injury scores and fibrin deposition were evaluated. Results At 4 and 24 h, inhaled NO caused the PAI-1 mRNA levels in the LPS-NO and LPS-ONO subgroups to decrease compared with the untreated LPS subgroups. At 48 h, higher PAI-1 mRNA levels than those of the corresponding control subgroup were only observed in the LPS-O subgroup, and these values were lower in the LPS-ONO subgroup than in the LPS-O subgroup. The trends of the PAI-1 protein levels mirrored those of PAI-1 mRNA. At 48 h, PAI-1 protein levels in the LPS-NO and LPS-ONO subgroups were decreased compared with those in the untreated LPS subgroups. The histopathological lung injury scores and fibrin deposition in LPS subgroups that inhaled NO showed a decreasing trend compared with the untreated LPS subgroups. Conclusions Inhaled NO can suppress elevated PAI-1 expression in rats with ALI induced by endotoxin. Although exposure to high-concentration oxygen prolongs the duration of PAI-1 mRNA overexpression in ALI, inhaled NO can reduce this effect and alleviate both fibrin deposition and lung injury.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    4
    Citations
    NaN
    KQI
    []