IR + VUV double resonance spectroscopy and extended density functional theory studies of ketone solvation by alcohol: 2-butanone·(methanol)n, n = 1–4 clusters

2017 
Infrared plus vacuum ultraviolet (IR + VUV) photoionization vibrational spectroscopy of 2-butanone/methanol clusters [MEK·(MeOH)n, n = 1–4] is performed to explore structures associated with hydrogen bonding of MeOH molecules to the carbonyl functional group of the ketone. IR spectra and X3LYP/6-31++G(d,p) calculations show that multiple isomers of MEK·(MeOH)n are generated in the molecular beam as a result of several hydrogen bonding sites available to the clusters throughout the size range investigated. Isomer interconversion involving solvating MeOH rearrangement should probably occur for n = 1 and 2. The mode energy for a hydrogen bonded OH stretching transition gradually redshifts as the cluster size increases. Calculations suggest that the n = 3 cluster isomers adopt structures in which the MEK molecule is inserted into the cyclic MeOH hydrogen bond network. In larger structures, the cyclic network may be preserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []