[Mechanism related to docosahexaenoic acid induced large conductance calcium-activated potassium channel currents increase in coronary smooth muscle cells].

2011 
OBJECTIVE: To investigate the mechanism of enhanced large conductance calcium-activated potassium channel currents (BK) in coronary smooth muscle cells (SMCs) by docosahexaenoic acid (DHA). METHODS: Coronary SMCs were isolated by enzyme digestion. Potassium channels in coronary SMCs were identified by applications of different potassium blockers. Effects of DHA and its metabolite 16, 17-epoxydocosapentaenoic acid (16, 17-EDP) on BK channels in the absence and presence of cytochrome P450 epoxygenase inhibitor SKF525A were studied by patch clamp in whole-cell configuration. RESULTS: BK channels were widely distributed in SMCs, and BK currents in normal SMCs accounted for (64.2 ± 2.7)% of total potassium currents (n = 20). DHA could activate BK channels, and its 50% effective concentration (EC(50)) was (0.23 ± 0.03) µmol/L, however, the effect of DHA on BK channels was abolished after SMCs were incubated with cytochrome P450 epoxygenase inhibitor SKF525A. 16, 17-EDP, a metabolite of DHA, could reproduce the effects of DHA on BK channels, and its EC(50) was (19.7 ± 2.8) nmol/L. CONCLUSION: DHA and metabolites can activate BK channels and dilate coronary arteries through activating cytochrome P450 epoxygenase pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []