Robust Segmentation of Various Anatomies in 3D Ultrasound Using Hough Forests and Learned Data Representations

2015 
3D ultrasound segmentation is a challenging task due to image artefacts, low signal-to-noise ratio and lack of contrast at anatomical boundaries. Current solutions usually rely on complex, anatomy-specific regularization methods to improve segmentation accuracy. In this work, we propose a highly adaptive learning-based method for fully automatic segmentation of ultrasound volumes. During training, anatomy-specific features are obtained through a sparse auto-encoder. The extracted features are employed in a Hough Forest based framework to retrieve the position of the target anatomy and its segmentation contour. The resulting method is fully automatic, i.e. it does not require any human interaction, and can robustly and automatically adapt to different anatomies yet enforcing appearance and shape constraints. We demonstrate the performance of the method for three different applications: segmentation of midbrain, left ventricle of the heart and prostate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    10
    Citations
    NaN
    KQI
    []