Determining the Oligomeric Structure of Proteorhodopsin by Gd3+-Based Pulsed Dipolar Spectroscopy of Multiple Distances

2014 
Summary The structural organization of the functionally relevant, hexameric oligomer of green-absorbing proteorhodopsin (G-PR) was obtained from double electron-electron resonance (DEER) spectroscopy utilizing conventional nitroxide spin labels and recently developed Gd 3+ -based spin labels. G-PR with nitroxide or Gd 3+ labels was prepared using cysteine mutations at residues Trp58 and Thr177. By combining reliable measurements of multiple interprotein distances in the G-PR hexamer with computer modeling, we obtained a structural model that agrees with the recent crystal structure of the homologous blue-absorbing PR (B-PR) hexamer. These DEER results provide specific distance information in a membrane-mimetic environment and across loop regions that are unresolved in the crystal structure. In addition, the X-band DEER measurements using nitroxide spin labels suffered from multispin effects that, at times, compromised the detection of next-nearest neighbor distances. Performing measurements at high magnetic fields with Gd 3+ spin labels increased the sensitivity considerably and alleviated the difficulties caused by multispin interactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    60
    Citations
    NaN
    KQI
    []