Changes in antioxidants and cell damage in heterotrophic maize seedlings differing in drought sensitivity after exposure to short-term osmotic stress.

2009 
Seedlings of two cultivars of maize (Zea mays L.) differing in their drought sensitivity were exposed to osmotic stress (0.3 M sorbitol, −1.4 MPa) for 4, 8, 12, 24 and 48 h during their heterotrophic stage of development. Alterations in their antioxidant pools combined with the activities of enzymes involved in defence against oxidative stress were investigated. Significant activation of antioxidative defence mechanisms correlated with drought-induced oxidative stress tolerance, and this phenomenon was shown to be characteristic of the drought-tolerant cv. Nova. Activities of some ROS-scavenging enzymes, superoxide dismutase (SOD), guaiacol peroxidase (POX), catalase (CAT) and ascorbate peroxidase (APX) were already enhanced significantly 4 h after the start of drought exposure in the drought-tolerant cv. Nova. Furthermore, a significant increase in the ascorbate pool was observed in this cultivar. On the other hand, in the drought-sensitive cv. Ankora only SOD and POD activities and the thiol pool were increased. No changes in APX activity or the level of ascorbate were recorded in cv. Ankora. Studies of root cell viability indicated that marked oxidative damage appeared only in cv. Ankora. These results, together with our previous observations, confirmed the higher ability of cv. Nova to tolerate drought stress and cope effectively with oxidative damage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    16
    Citations
    NaN
    KQI
    []