Decadal variability and scales of the sea surface structure in the northern Ionian

2011 
Abstract The variability and scales of the sea surface structure of the northern Ionian Sea from January 1993 to December 2007 were studied by means of altimeter remotely-sensed weekly Sea Level Anomaly (SLA) objective maps. Variability in the sea surface structure was addressed by means of empirical orthogonal function (EOF) analysis and, assuming an exponential correlation model, scales of the SLA field were quantified as e-folding distances of the SLA autocorrelation function. The variability in the sea surface structure, described by the first three EOFs, which cumulatively explain 60.3% of the data set variance, is characterized by a large-scale structure with variability on a time scale of ∼10–13 years and, on shorter scales, an eddy system with variability on an annual scale. The variability in the large-scale structure describes an overturning of the SLA field, which took place in 1997, and determines a reversal of the geostrophic upper-layer circulation. As the large-scale circulation transition takes place, time-dependent spectral analysis of EOF coefficients shows a redistribution of the spectral energy from inter-annual to semi-annual and monthly components. Spatial scales display variability on an annual and inter-annual time scale. On the annual time scale, variability in spatial scales is characterized by longer values in summer–fall and shorter in winter–spring. Inter-annual variability in spatial scales is demonstrated by a remarkable drop in the values during fall in the period 1998–2000. We propose an explanation of the variability in horizontal scales in terms of the redistribution of water masses and related modifications of the vertical structure of the water column associated with different regimes of the basin-scale circulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    4
    Citations
    NaN
    KQI
    []