Not everything is everywhere: the distance decay of similarity in a marine host–parasite system

2009 
Aim  We test the similarity–distance decay hypothesis on a marine host–parasite system, inferring the relationships from abundance data gathered at the lowest scale of parasite community organization (i.e. that of the individual host). Location  Twenty-two seasonal samples of the bogue Boops boops (Teleostei: Sparidae) were collected at seven localities along a coastal positional gradient from the northern North-East Atlantic to the northern Mediterranean coast of Spain. Methods  We used our own, taxonomically consistent, data on parasite communities. The variations in parasite composition and structure with geographical and regional distance were examined at two spatial scales, namely local parasite faunas and component communities, using both presence–absence (neighbour joining distance) and abundance (Mahalanobis distance) data. The influence of geographical and regional distance on faunal/community divergence was assessed through the permutation of distance matrices. Results  Our results revealed that: (1) geographical and regional distances do not affect the species composition in the system under study at the higher scales; (2) geographical distance between localities contributes significantly to the decay of similarity estimated from parasite abundance at the lowest scale (i.e. the individual host); (3) the structured spatial patterns are consistent in time but not across seasons; and (4) a restricted clade of species (the ‘core’ species of the bogue parasite fauna) contributes substantially to the observed patterns of both community homogenization and differentiation owing to the strong relationship between local abundance and regional distribution of species. Main conclusions  The main factors that tend to homogenize the composition of parasite communities of bogue at higher regional scales are related to the dispersal of parasite colonizers across host populations, which we denote as horizontal neighbourhood colonization. In contrast, the spatial structure detectable in quantitative comparisons only, is related to a vertical neighbourhood colonization associated with larval dispersal on a local level. The stronger decline with distance in the spatial synchrony of the assemblages of the ‘core’ species indicates a close-echoing environmental synchrony that declines with distance. Our results emphasize the importance of the parasite supracommunity (i.e. parasites that exploit all hosts in the ecosystem) to the decay of similarity with distance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    52
    Citations
    NaN
    KQI
    []