Single-molecule imaging can be achieved in live obligate anaerobic bacteria

2013 
Single-molecule fluorescence (SMF) permits imaging with nanometer-scale resolution. This technique is particularly useful for cellular imaging as it provides a non-invasive, minimally perturbative means to examine macromolecular localization and dynamics, even in live cells. Here, we demonstrate that nanometer-scale SMF imaging can be extended to a new category of experiments: intracellular imaging of live, obligate anaerobic cells on the benchtop. We investigate the starch-utilization system (Sus) proteins in the gut symbiont Bacteroides thetaiotaomicron and discuss three different labels that we implemented to detect these proteins: fluorescent proteins, the tetracysteine-based FlAsH tag, and the enzymatic HaloTag.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    8
    Citations
    NaN
    KQI
    []