Apparent remote synchronization of amplitudes: A demodulation and interference effect

2018 
A form of “remote synchronization” was recently described, wherein amplitude fluctuations across a ring of non-identical, non-linear electronic oscillators become entrained into spatially-structured patterns. According to linear models and mutual information, synchronization and causality dip at a certain distance, then recover before eventually fading. Here, the underlying mechanism is finally elucidated through novel experiments and simulations. The system non-linearity is found to have a dual role: it supports chaotic dynamics, and it enables the energy exchange between the lower and higher sidebands of a predominant frequency. This frequency acts as carrier signal in an arrangement resembling standard amplitude modulation, wherein the lower sideband and the demodulated baseband signals spectrally overlap. Due to a spatially-dependent phase relationship, at a certain distance near-complete destructive interference occurs between them, causing the observed dip. Methods suitable for detecting non-trivial...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    4
    Citations
    NaN
    KQI
    []