Twisted Nanotubes Formed from Ultrashort Amphiphilic Peptide I3K and Their Templating for the Fabrication of Silica Nanotubes

2010 
Many de novo designed amphiphilic peptides capable of self-assembly and further structural templating into hierarchical organizations such as nanofibers and gels carry more than 10 amino acid residues. A curious question is now raised about the minimal size that is required for initiating amphiphilically driven nanostructuring. In this work, we show that ultrashort peptides I3K and L3K could readily self-assemble into stable nanostructures. While L3K formed spherical nanospheres with diameters of ∼10−15 nm, I3K self-assembled into nanotubes with diameters of ∼10 nm and lengths of >5 μm. I3K nanotubes were very smooth and carried defined pitches of twisting. The difference could arise from the different β-sheet promoting power between isoleucine and leucine, suggesting that while hydrophobic interaction was dominant in the formation of L3K nanospheres hydrogen bonding governed the templating of antiparallel β-sheets and the subsequent formation of I3K nanotubes. Because of their extreme stability against h...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    101
    Citations
    NaN
    KQI
    []