Effect of Textile Architecture on Energy Absorption of Woven Fabrics Subjected to Ballistic Impact

2014 
Woven fabrics are widely used in various protective applications. The effects of different woven architectures (such as plain, basket, twill and satin) on impact resistance performance have not been adequately studied. In this work, high-speed impact testing on single layer plain weave structures has been carried out using a gas gun experimental setup. Ballistic resistance performance of the woven fabric is evaluated based on the resultant velocity of the projectile, as well as the post-mortem failure analysis. Finite element computational models are presented in this research, thereby providing predictive capability for the manufacturer and designer in order to minimise field testing, as well as shedding light on to the damage mechanisms of composite fabrics subjected to ballistic impact. The numerical model is validated with the experimental results in terms of dissipated energy and resultant velocity. Numerical investigation is conducted on other woven structures of identical areal density for comparison, revealing the importance of fabric architecture. The influences of yarn-yarn and yarn-projectile friction properties on the ballistic performance of various textile structures are also presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    13
    Citations
    NaN
    KQI
    []