Substantial leakage into indoor air from on-site solid fuel combustion in chimney stoves.
2021
Abstract Exposure to household air pollution (HAP) from solid fuel use (SFU) causes millions of premature deaths globally. Direct leakage from stoves into indoor air is believed to be the main cause of severe HAP. However, previous laboratory-based measurements reported leakage of minimal fractions from wood fuel combustion. Using a newly developed measurement method, on-site measurements were conducted to quantitatively evaluate the leakage of gases and particulate matter from different fuel-stove combinations. The fraction of indoor leakage to the total emission (F) of the measured air pollutants varied from 23 ± 11% to 40 ± 16% for different pollutants and fuel-stove combinations, and these were significantly higher than previously lab-based results. Fuel differences overwhelmed stove differences in influencing F values, with higher values from biomass burning than from coal combustion. The particles had higher F values than gases. Fugitive emission rates (ERs) were log-normally distributed, and biomass burning had higher ERs than coal burning. Indoor PM2.5 (fine particulate matter) and CO (carbon monoxide) concentrations measured during the burning period increased by nearly 1–2 orders of magnitude compared to concentrations before or after burning, confirming substantially high indoor leakage from fuel combustion in cookstoves. High fugitive emissions in indoor cookstoves quantified from the present on-site measurements effectively explain the high HAP levels observed in rural SFU households, and call for interventions to improve indoor air quality.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
26
References
1
Citations
NaN
KQI