Resonant Tunneling Anisotropic Magnetoresistance Induced by Magnetic Proximity.

2020 
We reveal that the interplay between Rashba spin-orbit coupling and proximity-induced magnetization in a two-dimensional electron gas leads to peculiar transport properties and large anisotropy of magnetoresistance. While the related tunneling anisotropic magnetoresistance (TAMR) has been extensively studied before, we predict an effect with a different origin arising from the evolution of a resonant condition with the in-plane rotation of magnetization and having a much larger magnitude. The resonances in the tunneling emerge from a spin parity-time symmetry of the scattering states. However, such a symmetry is generally absent from the system itself and only appears for certain parameter values. Without resonant behavior in the topological surface states of a proximitized three-dimensional topological insulator (TI), TAMR measurements can readily distinguish them from often misinterpreted trivial Rashba-like states inherent to many TIs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    3
    Citations
    NaN
    KQI
    []