Functional ferrocene polymer multilayer coatings for implantable medical devices: Biocompatible, antifouling, and ROS-sensitive controlled release of therapeutic drugs.

2021 
Abstract Bacterial infections and the formation of biofilms on the surface of implantable medical devices are critical issues that cause device failure. Implantable medical devices, such as drug delivery technologies, offer promising benefits for targeted and prolonged drug release, but a number of common disadvantages arise that include inadequate release and side effects. Organic film coatings for antifouling and drug delivery are expected to overcome these challenges. Ferrocene polymer-based multifunctional multilayer films were prepared to control the reactive oxygen species (ROS)-responsive release of therapeutic agents while maintaining an antifouling effect and improving biocompatibility. Polymers based on ferrocene and polyethylene glycol were prepared by controlling the molar ratio of carboxylate and amine groups. Layer-by-layer deposition was optimized to achieve the linear growth and self-assembly of dense and stable films. Outstanding anti-biofilm activity (∼91% decrease) could be achieved and the films were found to be blood compatible. Importantly, the films effectively incorporated hydrophobic drugs and exhibited dual-responsive drug release at low pH and under ROS conditions at physiological pH. Drug delivery to MCF-7 breast cancer cells was achieved using a Paclitaxel loaded film, which exhibited an anticancer efficacy of 62%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    0
    Citations
    NaN
    KQI
    []