Chemical and Electronic Changes of the CeO2 Support during CO Oxidation on Au/CeO2 Catalysts: Time-Resolved Operando XAS at the Ce LIII Edge

2019 
While being highly active for the CO oxidation reaction already at low temperatures, Au/CeO2 catalysts suffer from continuous deactivation with time on stream, with the activity and deactivation depending on the initial catalyst activation procedure. In previous X-ray absorption measurements at the Au LIII edge, which focused on changes in the electronic and geometric changes of Au, we found a modest increase of the Au particle size during reaction, with the Au nanoparticles (NPs) present in a dominantly metallic state during reaction, regardless of the pretreatment. Here we aim at expanding on these insights by examining the changes in electronic and chemical composition of the CeO2 support induced by different pretreatment procedures and during subsequent CO oxidation at 80 °C, by following changes at the Ce LIII near edge region in time-resolved operando X-ray absorption measurements. The results indicate a strong dependence of the initial concentration of Ce3+ ions on the pretreatment, while during subsequent reaction this rapidly approaches a steady-state value which depends on the oxidative/reductive character of the reaction gas mixture, but is largely independent of the pretreatment. These results are discussed and related to earlier finding on the electronic properties of Au nanoparticles under identical reaction conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    7
    Citations
    NaN
    KQI
    []