Numerical modeling of the impact pressure in a compressible liquid medium: application to the slap phase of the locomotion of a basilisk lizard

2017 
The forces acting on a solid body just at the time of impact on the surface of a medium with very low compressibility, such as water, can be quantified at acoustic time scales. This is necessary in wide range of applications varying from large-scale ship designs to the walking or running mechanisms of small creatures such as the basilisk lizard. In order to characterize such forces, a numerical model is developed in this study and is validated using analytical expressions of pressure as a function of the speed of sound-wave propagation in water. The computational results not only accurately match the analytical values but are also able to effectively capture the propagation of acoustic waves in water. The model is further applied to a case study wherein the impact impulse required by the basilisk lizard to assist in its walking on the water surface is evaluated. The numerical results are found to be in agreement with the closest available experimental data. The model and approach are thus proposed to evaluate impact forces for wide range of applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    6
    Citations
    NaN
    KQI
    []