Viscosity of erythritol and erythritol-water particles as a function of water activity: new results and an intercomparison of techniques for measuring the viscosity of particles

2018 
A previous study reported an uncertainty of up to three orders of magnitude for the viscosity of erythritol (1,2,3,4-butanetetrol) – water particles. To help reduce the uncertainty in the viscosity of these particles, we measured the diffusion coefficient of a large organic dye (rhodamine B isothiocyanate-dextran, average molecular weight ~ 70,000 g mol −1 ) in erythritol-water matrix as a function of water activity using rectangular area fluorescence recovery after photobleaching (rFRAP). The diffusion coefficients were then converted to viscosities of erythritol-water particles using the Stokes-Einstein equation. In addition, we carried out new viscosity measurements for erythritol-water particles using aerosol optical tweezers. Based on the new experimental results and viscosities reported in the literature, we conclude the following: 1) the viscosity of pure erythritol is 247 −107 +188  Pa s (two standard deviations), 2) the addition of a hydroxyl (OH) functional group to a linear C 4 carbon backbone increases the viscosity on average by a factor of 27 −5 +6 (two standard deviations), and 3) the increase in viscosity from the addition of one OH functional group to a linear C 4 carbon backbone is not a strong function of the number of OH functional groups already present in the molecule up to the addition of three OH functional groups, but the increase in viscosity may be larger when the linear C 4 carbon backbone already contains three OH functional groups. These results should help improve the understanding of the viscosity of secondary organic aerosol particles in the atmosphere. In addition, these results show that the rFRAP technique, aerosol optical tweezer technique, and bead-mobility technique give results in reasonable agreement if the uncertainties in the measurements are considered.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    94
    References
    3
    Citations
    NaN
    KQI
    []