Towards a complete next-to-logarithmic description of forward exclusive diffractive dijet electroproduction at HERA: real corrections

2019 
We studied the $ep\rightarrow ep+2jets$ diffractive cross section with ZEUS phase space. Neglecting the $t$-channel momentum in the Born and gluon dipole impact factors, we calculated the corresponding contributions to the cross section differential in $\beta=\frac{Q^{2}}{Q^{2}+M_{2jets}^{2}}$ and the angle $\phi$ between the leptonic and hadronic planes. The gluon dipole contribution was obtained in the exclusive $k_{t}$-algorithm with the exclusive cut $y_{cut}=0.15$ in the small $y_{cut}$ approximation. In the collinear approximation we canceled singularities between real and virtual contributions to the $q\bar{q}$ dipole configuration, keeping the exact $y_{cut}$ dependency. We used the Golec-Biernat - W\"usthoff (GBW) parametrization for the dipole matrix element and linearized the double dipole contributions. The results give roughly $\frac{1}{2}$ of the observed cross section for small $\beta$ and coincides with it for large $\beta.$
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    15
    Citations
    NaN
    KQI
    []