Trade-offs between tree cover, carbon storage and floristic biodiversity in reforesting landscapes

2012 
This study explores the relationships between an increase in tree cover area (i.e., natural and planted-tree land covers) and changes in forest carbon storage and the potential of a landscape to provide habitat for native floristic biodiversity. Four areas experiencing an increase in tree cover were analyzed. We developed a metric estimating the potential to support native biodiversity based on tree cover type (plantation or natural forests) and the landscape pattern of natural and anthropogenic land covers. We used published estimates for forest and plantation carbon stocks for each region. Focus regions in northwestern Costa Rica, northern Vietnam, southern Chile and highland Ecuador all showed an increase in tree cover area of 390 %, 260 %, 123 % and 418 %, respectively. Landscapes experiencing increases in natural secondary forest also experienced an increase in carbon stored above and below ground, and in the potential to support native floristic biodiversity. Study landscapes in Chile and Ecuador experiencing an expansion of exotic plantations saw their carbon stock decrease along with their potential to support native floristic biodiversity. This study shows that an increase in forest area does not necessarily imply an increased provision of ecosystem services when landscapes are reforesting with monoculture plantations of exotic tree species. Changes in the support of native biodiversity and the carbon stored in pulp rotation plantations, along with other ecosystem services, should be fully considered before implementing reforestation projects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    75
    Citations
    NaN
    KQI
    []