Perturb-Scan-Pull: A Novel Method Facilitating Conformational Transitions in Proteins.

2020 
Conformational transitions in proteins facilitate precise physiological functions. Therefore, it is crucial to understand the mechanisms underlying these processes to modulate protein function. Yet, studying structural and dynamical properties of proteins are notoriously challenging due to the complexity of the underlying potential energy surfaces (PES). We have previously developed the perturbation-response scanning (PRS) method to identify key residues that participate in the communication network responsible for specific conformational transitions. PRS is based on a residue-by-residue scan of the protein to determine the subset of residues/forces which provide the closest conformational change leading to a target conformational state, inasmuch as linear response theory applies to these motions. Here, we develop a novel method to further evaluate if conformational transitions may be triggered on the PES. We aim to study functionally relevant conformational transitions in proteins using results obtained by PRS and feeding them as inputs to steered molecular dynamics simulations. The success and the transferability of the method are evaluated on three protein systems having different complexity of motions on the PES: calmodulin, adenylate kinase, and bacterial ferric binding protein. We find that the method captures the target conformation, while providing key residues and the optimum conformational transition paths with relatively low free energy profiles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    109
    References
    15
    Citations
    NaN
    KQI
    []