Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review

2021 
Abstract Owing to its high porosity and high surface area, zeolite has a good adsorption effect on liquid adsorbates such as water, ammonia, organic liquids and gas adsorbates such as volatile organic compounds, hydrocarbons, etc. A large amount of heat is released during the adsorption period when the zeolite adsorbs these gases and liquids. The energy storage, the heat and mass transfer performance of zeolite adsorption is influenced by the selection of adsorbent and adsorbate as well as the design of zeolite bed. In this paper, the mechanism of zeolite adsorption is discussed, and equations that describe the adsorption isotherm and the heat and mass transfer of adsorbate on zeolite are reviewed. From the view of system aspect, the factors (such as the structural design of zeolite bed, the mass flow rate of adsorbate, the operating temperature, and the cycle time) that will affect the heat storage and transfer in adsorption are concluded. In terms of adsorbent/adsorbate, the properties of modified zeolites and zeolite composites are presented, and the reaction behavior of different zeolites and adsorbates is discussed. As for the application of zeolite adsorption system in the energy storage and heat transfer field, zeolite-based heat exchanger (HX), energy storage system (ESS), dehumidifier, energy absorption system (EAS), volatile organic compounds (VOCs) removal system and hydrocarbon (HC) trap are reported. Research results demonstrate that the zeolite adsorption system is promising no matter used alone or in combination with other equipment in energy-saving and environmentally friendly fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    326
    References
    7
    Citations
    NaN
    KQI
    []