Phosphorus Transport along the Cropland–Riparian–Stream Continuum in Cold Climate Agroecosystems: A Review

2021 
Phosphorus (P) loss from cropland to ground and surface waters is a global concern. In cold climates (CCs), freeze–thaw cycles, snowmelt runoff events, and seasonally wet soils increase P loss potential while limiting P removal effectiveness of riparian buffer zones (RBZs) and other practices. While RBZs can help reduce particulate P transfer to streams, attenuation of dissolved P forms is more challenging. Moreover, P transport studies often focus on either cropland or RBZs exclusively rather than spanning the natural cropland–RBZ–stream gradient, defined here as the cropland–RBZ–stream continuum. Watershed P transport models and agronomic P site indices are commonly used to identify critical source areas; however, RBZ effects on P transport are usually not included. In addition, the coarse resolution of watershed P models may not capture finer-scale soil factors affecting P mobilization. It is clear that site microtopography and hydrology are closely linked and important drivers of P release and transport in overland flow. Combining light detection and ranging (LiDAR) based digital elevation models with P site indices and process-based models show promise for mapping and modeling P transport risk in cropland-RBZ areas; however, a better mechanistic understanding of processes controlling mobile P species across regions is needed. Broader predictive approaches integrating soil hydro-biogeochemical processes with real-time hydroclimatic data and risk assessment tools also hold promise for improving P transport risk assessment in CCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    129
    References
    2
    Citations
    NaN
    KQI
    []