MicroRNA‐3064‐5p sponged by MALAT1 suppresses angiogenesis in human hepatocellular carcinoma by targeting the FOXA1/CD24/Src pathway

2019 
Angiogenesis is critical for the development, progression, and metastasis of hepatocellular carcinoma (HCC), but the roles of miR-3064-5p in HCC angiogenesis are still unknown. In this study, the roles of miR-3064-5p in HCC angiogenesis were studied in 192 HCC patients, xenograft mouse models, and HCC cell lines. The results showed that miR-3064-5p expression was significantly decreased in HCC tissues and cells, and downregulated miR-3064-5p was associated with upregulated angiogenic potential of HCC. MiR-3064-5p inhibited proangiogenic VEGFA and angiogenin expressions but induced antiangiogenic endostatin and MMP12 expressions, finally leading to suppression of HCC angiogenesis, as shown by the decline in intratumoral microvessel density (MVD). Moreover, miR-3064-5p was inversely correlated with lncRNA MALAT1 and FOXA1. FOXA1 bound to and interacted with CD24 and then regulated Src phosphorylation. MiR-3064-5p played an antiangiogenic role by inhibiting the FOXA1/CD24/Src pathway, whereas oncogenic MALAT1 functioned as a competing endogenous RNA (ceRNA) by sponging miR-3064-5p to alleviate the suppressive effect on the FOXA1 pathway. HCC patients with high miR-3064-5p, low MALAT1, or low FOXA1 expression had a better prognosis with longer overall survival and recurrence-free survival. In univariate and multivariate analyses, miR-3064-5p was identified as the independent prognostic predicator for HCC progression and patient survival. Taken together, miR-3064-5p exerts an antiangiogenic role by targeting the FOXA1/CD24/Src pathway but oncogenic lncRNA MALAT1 acts as a ceRNA to sponge miR-3064-5p. MiR-3064-5p is of great clinical significance and is a novel prognostic indicator and an attractive therapeutic target for HCC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    22
    Citations
    NaN
    KQI
    []