Segmented flow generator for serial crystallography at the European X-ray free electron laser.

2020 
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported. Due to the pulsed nature of X-ray free electron laser (XFEL) instruments the majority of protein crystals, which are injected using continuous jet injection techniques are wasted. Here, the authors present a microfluidic device to deliver aqueous protein crystal laden droplets segmented with an immiscible oil and demonstrate that with this device an approx. 60% reduction in sample waste was achieved for data collection of 3-deoxy-D-manno-octulosonate 8-phosphate synthase crystals at the EuXFEL.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    6
    Citations
    NaN
    KQI
    []