Thermal evolution of morphological, optical, and photocatalytic properties of Au–Cu2O–CuO nanocomposite thin film

2021 
Plasmonic nanocomposite thin films find exciting applications in environmental remediation and photovoltaics. We report on thermal annealing driven development of morphology, structure and photocatalytic performance of Au–Cu2O–CuO nanocomposite thin film. Nanocomposite thin film coatings of Au–Cu2O–CuO, prepared by radio frequency (RF) magnetron co-sputtering, were annealed at different temperatures. Thermal annealing driven evolution of morphology of Au–Cu2O–CuO nanocomposite was studied by field emission scanning electron microscopy (FESEM), which revealed significant growth in size of nanostructures from 10 nm to 69 nm upon annealing. X-ray diffraction (XRD) together with Raman studies confirmed the nanocomposite nature of Au–Cu2O–CuO film. UV-visible diffuse reflectance spectroscopy (UV-vis-DRS) studies showed band gap variation from 2.44 eV to 1.8 eV upon annealing at 250 °C. Nanocomposite thin film annealed at 250 °C exhibited superior photocatalytic activity for organic pollutants [methylene blue (MB) and methyl orange (MO)] decomposition. The origins of thermal transformation of morphological, optical and photocatalytic behaviour of the Au–Cu2O–CuO nanocomposite coating are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []