Predicting clinical drug response from model systems by non-linear subspace-based transfer learning

2020 
Pre-clinical models have been the workhorse of cancer research for decades. While powerful, these models do not fully recapitulate the complexity of human tumors. Consequently, translating biomarkers of drug response from pre-clinical models to human tumors has been particularly challenging. To explicitly take these differences into account and enable an efficient exploitation of the vast pre-clinical drug response resources, we developed TRANSACT, a novel computational framework for clinical drug response prediction. First, TRANSACT employs non-linear manifold learning to capture biological processes active in pre-clinical models and human tumors. Then, TRANSACT builds predictors on cell line response only and transfers these to Patient-Derived Xenografts (PDXs) and human tumors. TRANSACT outperforms four competing approaches, including Deep Learning approaches, for a set of 15 drugs on PDXs, TCGA cohorts and 226 metastatic tumors from the Hartwig Medical Foundation data. For only four drugs Deep Learning outperforms TRANSACT. We further derived an algorithmic approach to interpret TRANSACT and used it to validate the approach by identifying known biomarkers to targeted therapies and we propose novel putative biomarkers of resistance to Paclitaxel and Gemcitabine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    94
    References
    2
    Citations
    NaN
    KQI
    []