Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector

2013 
Vacuum insulation of 1 MV is a common issue for the HV bushing and the accel- erator for the ITER neutral beam injector (NBI). The HV bushing as an insulating feedthrough has a five-stage structure and each stage consists of double-layered insulators. To sustain 1 MV in vacuum, reduction of electric field at several triple points existing around the double-layered insulators is a critical issue. To reduce electric field simultaneously at these points, three types of stress ring have been developed. In a voltage holding test of a full-scale mockup equipped with these stress rings, 120% of rated voltage was sustained and the voltage holding capability required in ITER was verified. In the MeV accelerator, whose target is the acceleration of a H ion beam of 1 MeV, 200 A/m 2 , the gap between the grid support was extended to suppress breakdowns triggered by electric field concentration at the edge and corner of the grid support. This modi- fication improved the voltage holding capability in vacuum, and the MeV accelerator succeeded in sustaining 1 MV stably. Furthermore, it appeared that the H ions beam was deflected and a part of the beam was intercepted at the acceleration grid. This causes high heat load on the grids and breakdowns during beam acceleration. To suppress the direct interception, a new grid was designed with proper aperture displacement based on a three dimensional beam trajectory analysis. As a result, 980 keV, 185 A/m 2 H ion beam acceleration has been demonstrated, which is close to the ITER requirement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []