Modulation of Immune Reaction in Hydrodynamic Gene Therapy for Hemophilia A.

2021 
Hemophilia A (HA) is a monogenic disease characterized by plasma clotting factor 8 (F8) deficiency due to F8 mutation. We have been attempting to cure HA permanently using a CRISPR-Cas9 gene-editing strategy. Here, we induced targeted integration of BDDF8 (B-domain-deleted F8) gene into the albumin locus of HA mice by hydrodynamic tail vein injection of editing plasmid vectors. One week after treatment, a high F8 activity ranging from 70% to 280% of normal serum levels was observed in all treated HA mice but dropped to background levels 3-5 weeks later. We found that the humoral immune reaction targeting F8 is the predominant cause of the decreased F8 activity. We hypothesized that hydrodynamic injection-induced liver damage triggered the release of large quantities of inflammatory cytokines. However, co-injection of plasmids expressing a dozen immunomodulatory factors failed to curtail the immune reaction and stabilize F8 activity. The spCas9 plasmid carrying a miR-142-3p target sequence alleviated the cellular immune response but was unable to deliver therapeutic efficacy. Strikingly, immunosuppressant cyclo-phosphamide virtually abolished the immune response, leading to a year-long stable F8 level. Our findings should have important implications in developing therapies in mouse models using the hydrodynamic gene delivery approach, highlighting the ne-cessity of modulating the innate immune response triggered by liver damage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []