Quantitative MR relaxation using MR fingerprinting with fractional-order signal evolution.

2021 
Abstract The fractional-order Bloch equations have been shown to describe a wider range of experimental situations involving heterogeneous, porous, or composite materials. This paper introduces a novel dictionary of quantitative MR fingerprinting generated by signal evolution model with fractional-order Bloch equations to describe magnetic resonance (MR) relaxation. Here, the fractional-order relaxation models are implemented into Bloch equations through phase transitions using EPG simulation. In the phantom experiments, the fractional-order analysis showed smaller root mean squared error (T1: RMSE = 5.21%, T2: RMSE=3.75%) using the proposed method compared to using conventional method. Among the in vivo experiments of human brains, the estimated T1 and T2 values (mean ± SD) were 843 ± 46.3 ms and 70 ± 4.7 ms in white matter, 1323 ± 28.5 ms and 95 ± 3.8 ms in gray matter. So the proposed method can provide well extensions of current MR fingerprinting and has shown potential to apply into the phantom experiments and the in vivo applications to approach the standard methods for quantitative imaging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    1
    Citations
    NaN
    KQI
    []