language-icon Old Web
English
Sign In

Energy Response of LaBr3

2012 
In recent years, important developments in scintillator technology have been made in the Lanthanum Halogen LaBr3 (Ce) crystal, which has high-energy separation, very good timing-properties and a stopping-power that can be used as a detector at room temperature. The international PARIS project will be created as a prototype of this detector system, which will be used in SPIRAL2 as a stand alone or in collaboration with the EXOGAM or AGATA detector array. A fusion evaporation reaction is used to produce exotic nuclei and is then transferred at a very high angular momentum to compound nuclei. Due to the accompanying high rotation, the exotic shape starts changing into vibrational and rotational collective phenomena which hitherto have together become difficult to detect and fully understand. In order to perform this type of research, in addition to conventional known gamma-ray detectors, high-efficiency gamma-ray detectors that can effectively identify gamma rays are also required as calorimeters. LaBr3 is planned to use such means. Results of ongoing analysis for energy and the time response of LaBr3 will be presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []