Photoluminescence properties of a new orange-red-emitting Sm(3+)-La3SbO7 phosphor.

2016 
The antimonate compound La3SbO7 has high chemical stability, lattice stiffness and thermal stability. Orange–red-emitting antimonate-based phosphors La3SbO7:xSm3+ (x = 0.02, 0.05, 0.08, 0.10, 0.15, 0.20 and 0.25) were synthesized. The phase structure and photoluminescence properties of these phosphors were investigated. The emission spectrum obtained on excitation at 407 nm contained exclusively the characteristic emissions of Sm3+ at 568, 608, 654 and 716 nm, which correspond to the transitions from 4G5/2 to 6H5/2, 6H7/2, 6H9/2 and 6H11/2 of Sm3+, respectively. The strongest emission was located at 608 nm due to the 4G5/2→6H7/2 transition of Sm3+, generating bright orange–red light. The critical quenching concentration of Sm3+ in La3SbO7:Sm3+ phosphor was determined as 10% and the energy transfer between Sm3+ was found to be through an exchange interaction. The International Commission on Illumination chromaticity coordinates of the La3SbO7:0.10Sm3+ phosphors are located in the orange–red region. The La3SbO7:Sm3+ phosphors may be potentially used as red phosphors for white light-emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    11
    Citations
    NaN
    KQI
    []