Hydrogen sulfide inhibits cigarette smoke-induced inflammation and injury in alveolar epithelial cells by suppressing PHD2/HIF-1α/MAPK signaling pathway

2019 
Abstract Chronic obstructive pulmonary fibrosis (COPD) is a chronic and fatal lung disease with few treatment options. Sodium hydrosulfide (NaHS), a donor of hydrogen sulfide (H2S), was found to alleviate cigarette smoke (CS)-induced emphysema in mice, however, the underlying mechanisms have not yet been clarified. In this study, we investigated its effects on COPD in a CS-induced mouse model in vivo and in cigarette smoke extract (CSE)-stimulated alveolar epithelial A549 cells in vitro. The results showed that NaHS not only relieved emphysema, but also improved pulmonary function in CS-exposed mice. NaHS significantly increased the expressions of tight junction proteins (i.e., ZO-1, Occludin and claudin-1), and reduced apoptosis and secretion of pro-inflammatory cytokines (i.e., TNF-α, IL-6 and IL-1β) in CS-exposed mouse lungs and CSE-incubated A549 cells, indicating H2S inhibits CS-induced inflammation, injury and apoptosis in alveolar epithelial cells. NaHS also upregulated prolyl hydroxylase (PHD)2, and suppressed hypoxia-inducible factor (HIF)-1α expression in vivo and in vitro, suggesting H2S inhibits CS-induced activation of PHD2/HIF-1α axis. Moreover, NaHS inhibited CS-induced phosphorylation of ERK, JNK and p38 MAPK in vivo and in vitro, and treatment with their inhibitors reversed CSE-induced ZO-1 expression and inflammation in A549 cells. These results suggest that NaHS may prevent emphysema via the suppression of PHD2/HIF-1α/MAPK signaling pathway, and subsequently inhibition of inflammation, epithelial cell injury and apoptosis, and may be a novel strategy for the treatment of COPD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    18
    Citations
    NaN
    KQI
    []