Increase of Antitumoral Effects of Cytokine-Induced Killer Cells by Antibody-Mediated Inhibition of MICA Shedding.

2020 
Natural killer group 2D (NKG2D) receptor plays a pivotal role in cytokine-induced killer (CIK) cell-mediated cytotoxicity against malignancies, and the expression of NKG2D ligands might allow targets to be more susceptible to the CIK cell-mediated destruction. In this study, we investigated the synergistic effects of CIK cells antitumor activity and antibody-mediated inhibition of MICA/B shedding. This monoclonal antibody (7C6) has been previously shown to be able to specifically target MICA/B a3 domain on tumor cells, resulting in the increase in cell surface MICA/B expression by inhibition of their shedding. In the current study, we show that 7C6 antibody could substantially inhibit MICA shedding and stabilize the expression of MICA/B on Hela cells and MDA-MB-231 cells. In combination with 7C6, CIK cells showed higher degranulation rate, more IFN-γ production and elevated cytotoxic capacity against tumor cells. Furthermore, we demonstrate that NKG2D-MICA/B ligation could lead to activation of both CD3+ CD56− T cells and CD3+CD56+ NKT subset cells of CIK culture and NKT subset was more sensitive to NKG2D signaling than the counterpart T cells. 7C6-mediated inhibition of MICA shedding could strengthen this signal and eventually enhance the antitumor activity of CIK cells. With multiple advantages of easy ex vivo expansion, minor GVHD, natural tumor trafficking and non-MHC restricted, CIK cell-based therapy may serve as a potent combination partner with MICA antibody-mediated immunotherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    6
    Citations
    NaN
    KQI
    []