Removal of Fluoride from Water Using Iron Oxide-Hydroxide Nanoparticles

2012 
A novel and facile method for the synthesis of uniform stoichiometric powder form of non-magnetic iron oxide-hydroxide nanoparticles with spherical morphology and its application for defluoridation of drinking water is reported. X-ray powder diffraction analysis (XRD), BET surface area, FTIR, field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) images were used to characterize nanoscale iron oxide-hydroxide. Transmission electron microscopy (TEM) image revealed the formation of iron oxide-hydroxide nanoparticles with spherical morphology. The iron oxide-hydroxide nanoparticles showed an excellent ability to remove fluoride (F − from contaminated water over a wide range of pH. The influences of temperature, stirring speed, pH, adsorbent dose and contact time were studied. The equilibrium data were tested with various isotherm models and finally, a calculation procedure was reported for the calculation of adsorbent requirement. The fluoride adsorbed nanoparticles was regenerated upto 70% using sodium hydroxide or hydrochloric acid solution. The iron oxide-hydroxide nanoparticles can be used as an effective and replicable adsorbent media for defluoridation of water in presence of competing anions like chloride, iodate, iodide and sulphate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    56
    Citations
    NaN
    KQI
    []