Electrical Stimulation in Tissue Regeneration

2011 
That human body generates biological electric field and current is a well-known natural phenomenon. In 1983, electrical potentials ranging between 10 and 60 mV at various locations of the human body were measured by Barker (Foulds & Barker, 1983), who also located the so-called epidermal or skin “battery” inside the living layer of the epidermis. Naturally occurred electrical field in human body was also reviewed in 1993 (Zipse, 1993). Bioelectricity is inherent in wound healing. An injury potential occurs in the form of a steady direct current (DC) electric field (EF) when a wound is created. This endogenous EF has been shown to guide cell migration to sprout directly toward the wound edge. On the other hand, wound healing is compromised when the EF is inhibited. McCaig et al. (McCaig et al., 2005) revealed that electrical events induced by injury potential could persist for a long time and present across hundreds of microns rather than be confined to the immediate vicinity of the cell membrane. Moreover, a voltage gradient called “action potential” across cell membrane is known to trigger cells to transmit signals and secrete hormones. The electrical resistivity of biological tissues obviously varies due to the variation in tissue composition, such as tissue type and density, cell membrane permeability, and electrolyte content. The resistivity of these biological tissues has been measured by means of bioelectrical impedance analysis (BIA). When nutritional and metabolic disorders occur, the electrical properties of certain tissues become abnormal. BIA has therefore been used to diagnose human organ malfunctions. However, it remains difficult to delineate living tissue, such as bone tissue, because this tissue is a composite material that is anisotropic in structure and inhomogeneous in composition. For example, in 1975, Liboff (Liboff et al., 1975) reported a resistance ranging widely from 0.7 to 1 × 105 ohm/cm in human tibia. Recent advances in computed three-dimensional microtomography (microCT) now enable us to clarify the interrelationships between the electrical properties and the microstructures of human bone. The electrical property of bones varies widely caused by many factors such as the unevenly distributed and electrolyte-filled pores, moisture content, pH and conductivity of the immersing fluid. Nevertheless, it remains both essential and possible to normalize the resistance and the capacitance of different bone types. Electrical measurements provide a tool for the rapid quantitative diagnosis of bone
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    94
    References
    38
    Citations
    NaN
    KQI
    []