Uncertainties of ground-based microwave radiometer retrievals in zenith and off-zenith observations under snow conditions

2016 
This paper is to investigate the uncertainties of microwave radiometer (MWR) retrievals in snow conditions and also explore the discrepancies of MWR retrievals in zenith and off-zenith observations. The MWR retrievals were averaged in a ±15 min period centered at sounding times of 00:00 and 12:00 UTC and compared with radiosonde observations (RAOBs). In general, the MWR retrievals have a better correlation with RAOB profiles in off-zenith observations than in zenith observations, and the biases (MWR observations minus RAOBs) and root mean square errors (RMSEs) between MWR and RAOB are also clearly reduced in off-zenith observations. The biases of temperature, relative humidity, and vapor density decrease from 4.6 K, 9 %, and 1.43 g m−3 in zenith observations to −0.6 K, −2 %, and 0.10 g m−3 in off-zenith observations, respectively. The discrepancies between MWR retrievals and RAOB profiles by altitude present the same situation. Cases studies show that the impact of snow on accuracies of MWR retrievals is more serious in heavy snowfall than in light snowfall, but off-zenith observation can mitigate the impact of snowfall. The MWR measurements become less accurate in snowfall mainly due to the retrieval algorithm, which does not consider the effect of snow, and the accumulated snow on the top of the radome increases the signal noise of MWR measurements. As the snowfall drops away by gravity on the sides of the radome, the off-zenith observations are more representative of the atmospheric conditions for RAOBs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    3
    Citations
    NaN
    KQI
    []