Modulation of platelet-activating-factor production by incorporation of naturally occurring 1-O-alkylglycerols in phospholipids of human leukemic monocyte-like THP-1 cells

1997 
1-O-Alkylglycerols (alkyl-Gro), naturally occurring compounds abundant in shark liver oil, protect patients from radiotherapy side-effects. However, the protection mechanism is not well understood. It might be mediated by alkyl-Gro incorporation into pools of platelet-activating factor (PAF) precursor and subsequent modification of PAF biosynthesis. Using a 3H-labelled or unlabelled natural alkyl-Gro mixture, in which prominent alkyl chains were C18:1(9) (54–65%), C16:1(7) (5–15.5%), and C16:0 (5–10%), we investigated the incorporation of alkyl-Gro into phospholipids of human leukemic monocyte-like THP-1 cells. Incubation of cells for 24 h with [3H]alkyl-Gro (10 μM) resulted in their incorporation into 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (1097 ± 25.1 pmol/2×106 cells) and into 1-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine (640.4 + 12.5 pmol/2×106 cells) with a total yield of 6.5%. Such incorporation induced production of 1-O-[3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine ([3H]PAF), which was increased after stimulation by the calcium ionophore A23187. HPLC analysis of the [3H]PAF molecular species indicated that the three major [3H]alkyl-Gro were used for [3H]PAF synthesis in ratios similar to that of the mixture. Total production of biologically active PAF, as measured by the platelet-aggregation bioassay, was also increased by alkyl-Gro incorporation in resting (+20%) and in A23187-stimulated (+59%) THP-1 cells. HPLC analysis of the [3H]PAF produced in the presence of [3H]acetate, confirmed that levels of PAF, but not of its 1-acyl analog, were increased by alkyl-Gro incorporation in resting and stimulated cells. However, the rise in [3H]acetyl-PAF, which resulted mainly from C16:0 PAF, was reduced by about 50% in the presence of the PAF-receptor antagonist SR 27417, providing evidence that stimulation of total PAF synthesis was caused by the increase in the precursor pool and autocrine amplification of PAF-induced PAF production. Thus, the supplementation of THP-1 cells in culture with naturally occurring alkyl-Gro led to the incorporation of alkyl-Gro into ether-containing phospholipids, which were subsequently used for PAF synthesis. Furthermore, alkyl-Gro incorporation resulted in a significant rise in PAF production by THP-1 cells under resting and stimulated conditions. These results may be of importance for modulating PAF production in several pathophysiological conditions, such as peroxysome deficiencies, that are associated with a lack of ether lipid synthesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    21
    Citations
    NaN
    KQI
    []