A Bayesian Approach for Uncertainty Quantification of Extreme Precipitation Projections Including Climate Model Interdependency and Nonstationary Bias

2014 
AbstractClimate change impact studies are subject to numerous uncertainties and assumptions. One of the main sources of uncertainty arises from the interpretation of climate model projections. Probabilistic procedures based on multimodel ensembles have been suggested in the literature to quantify this source of uncertainty. However, the interpretation of multimodel ensembles remains challenging. Several assumptions are often required in the uncertainty quantification of climate model projections. For example, most methods often assume that the climate models are independent and/or that changes in climate model biases are negligible. This study develops a Bayesian framework that accounts for model dependencies and changes in model biases and compares it to estimates calculated based on a frequentist approach. The Bayesian framework is used to investigate the effects of the two assumptions on the uncertainty quantification of extreme precipitation projections over Denmark. An ensemble of regional climate mo...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    23
    Citations
    NaN
    KQI
    []