Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula

2013 
Drought and tropospheric ozone are escalating climate change problems that can co-occur. In this study, we observed Medicago truncatula cultivar Jemalong that is sensitive to ozone and drought stress when applied singly, showed tolerance when subjected to a combined application of these stresses. Lowered stomatal conductance may be a vital tolerance mechanism to overcome combined ozone and drought. Sustained increases in both reduced ascorbate and glutathione in response to combined stress may play a role in lowering reactive oxygen species and nitric oxide toxicity. Transcriptome analysis indicated that genes associated with glucan metabolism,responses to temperature and light signalling may play a role in dampening ozone responses due to drought-induced stomatal closure during combined occurrence of these two stresses. Gene ontologies for jasmonic acid signalling and innate immunity were enriched among the 300 differentially expressed genes unique to combined stress. Differential expression of transcription factors associated with redox, defence signalling, jasmonate responses and chromatin modifications may be important for evoking novel gene networks during combined occurrence of drought and ozone. The alterations in redox milieu and distinct transcriptome changes in response to combined stress could aid in tweaking the metabolome and proteome to annul the detrimental effects of ozone and drought in Jemalong.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    125
    References
    58
    Citations
    NaN
    KQI
    []