Understanding the enhanced stability of bromide substitution in lead iodide perovskites

2020 
Lead halide perovskites have rapidly emerged as candidate materials for high-performing solar cells, but show serious issues related to long-term stability. Methylammonium (MA) lead perovskites with mixed iodide–bromide compositions, MAPb(I1–xBrx)3, are reported to exhibit improved stability, but the origin of such behavior is not fully understood. Here, we report new insights into the degradation properties of MAPb(I1–xBrx)3 using ab initio simulations and a range of spectroscopic techniques. Absorbance spectroscopy shows that as the Br content increases, the material stability toward oxygen and light increases. Isothermal gravimetric analysis and time-resolved single photon counting show that the amount of oxygen incorporation into perovskite films decreases significantly with increasing Br content. Ab initio simulations indicate that the degradation reaction involving superoxide species is energetically exothermic for pure MAPbI3 but becomes less favorable with increasing Br content with an endothermic...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    25
    Citations
    NaN
    KQI
    []